# The coordinates of four control points relative to a current WCS are given by :

${P}_{0}={\left[\begin{array}{ccc}2& 2& 0\end{array}\right]}^{T};\phantom{\rule{0ex}{0ex}}{P}_{1}={\left[\begin{array}{ccc}2& 3& 0\end{array}\right]}^{T};\phantom{\rule{0ex}{0ex}}{P}_{2}={\left[\begin{array}{ccc}3& 3& 0\end{array}\right]}^{T};\phantom{\rule{0ex}{0ex}}{P}_{3}={\left[\begin{array}{ccc}3& 2& 0\end{array}\right]}^{T};$

Find the equations of the routing Besier curve also find points on the courve for $S=0,\frac{1}{4},\frac{1}{2},\frac{1}{3},\frac{3}{4}and1$